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DietWatch: Fine-grained and Robust Dietary Monitoring via

Smartwatch in Real-World Scenarios

Zhen Hou ®, Yucheng Xie

Abstract—Dietary behaviors play a pivotal role in promoting
overall health and preventing chronic diseases (e.g., hypertension
and diabetes). The widespread adoption of smartwatches offers
a promising platform for continuous dietary monitoring. How-
ever, existing smartwatch-based dietary monitoring approaches
struggle with challenges in real-world scenarios, including dy-
namic interference, gesture generalization, and user diversity.
To address these limitations, we propose DietWatch, a real-world
dietary monitoring system that utilizes a commercial smartwatch
to capture and analyze fine-grained dietary behaviors. DietWatch
incorporates a dynamic interference mitigation module to sup-
press acoustic and inertial noise. It further employs a contrastive
learning-based framework to distinguish eating gestures from
diverse daily activities, without constraining users’ eating styles
and activity types. To enhance generalizability across users,
DietWatch adopts a cross-user adaptation mechanism to extract
user-independent features. Furthermore, a clustering algorithm
is designed to estimate dietary time, while an attention-based
multimodal fusion method is employed to analyze biting and
chewing frequencies and identify food categories. Experimental
results demonstrate that DietWatch achieves 79.95% temporal In-
tersection over Union for eating time detection, 85.68% accuracy
in food classification, and mean absolute errors of 1.26 bites/min
for biting frequency and 7.71 chews/min for chewing frequency
estimation.

Index Terms—Dietary monitoring, smartwatches, Internet of
Things (IoT), multimodal sensor fusion, contrastive learning,
cross-user adaptation.

I. INTRODUCTION

IETARY behavior has a profound impact on human

health. According to reports from the World Health Or-
ganization, poor dietary habits are key risk factors for chronic
conditions, including obesity, diabetes, and cardiovascular
diseases [1]. Given the significant health risks associated with
poor diet, it becomes essential to monitor and understand in-
dividual dietary behaviors—including dietary time, biting and
chewing frequency, and food category selections. These de-
tailed insights are key to uncovering underlying dietary issues,
providing a basis for developing effective health intervention
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Fig. 1.
smartwatch. DietWatch captures and analyzes eating behaviors in real-world
scenarios.
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strategies, and delivering personalized nutritional advice. For
instance, identifying the timing of dietary intake could reveal
snacking habits, which in turn can uncover hidden contributors
to weight gain [2]. Tracking biting and chewing frequency can
reveal behaviors like rapid consumption, which often leads to
overeating and poor digestion [3]. In addition, understanding
food categories consumed is crucial for nutritionists to create
balanced and personalized dietary plans tailored to individual
needs [4].

Traditional dietary behavior analysis approaches rely on
self-reporting tools, including food diaries and 24-hour recall
questionnaires [5]. While commonly employed, these methods
suffer from subjective bias and memory errors, compromising
the accuracy of dietary information on meal timing and food
types. Moreover, they cannot monitor biting and chewing
frequency, limiting their ability to provide a complete pic-
ture of eating behaviors [6]. To overcome these limitations,
researchers propose employing wearable devices for dietary
monitoring [7]-[11], which are worn on the body to fa-
cilitate continuous dietary-related data collection and enable
automated monitoring. Specifically, researchers utilize head-
mounted cameras [12], [13] to capture videos associated with
the texture of foods. Customized inertial sensors worn on
the upper limb capture food-grab gestures, providing insights
into hand-to-mouth actions during eating [14], [15]. Dedicated
devices such as digital laryngographs worn around the neck
and RF tri-layer sensors mounted on teeth detect chewing
behaviors [16], [17]. Despite demonstrating high accuracy,
these wearable devices face significant practical limitations.
They are often cumbersome, making users self-conscious in
social settings, particularly during public dining. Additionally,
high costs and operational complexity limit their accessibility
for general users.

Due to the widespread adoption and relatively low cost,
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smartwatches have emerged as an ideal platform for daily
dietary monitoring. With over 224 million users worldwide
and prices starting as low as tens of dollars, smartwatches
provide an accessible and cost-effective way for continuous
health tracking [18], [19]. Moreover, smartwatches integrate
multiple sensors, such as inertial measurement units (IMUs)
and microphones, allowing for comprehensive dietary feature
extraction from inertial and acoustic domains and enabling
fine-grained monitoring. Existing smartwatch-based eating
monitoring methods have shown initial success in tracking
various aspects of dietary behaviors [15], [20]-[24]. However,
these approaches remain limited in scope, providing only
partial tracking of dietary behavior, such as eating time. To
gain a comprehensive understanding of dietary habits, there is
a significant need for a fine-grained monitoring system that
captures multiple dietary behaviors simultaneously, including
eating time, biting/chewing frequency, and food category
selections. A more pressing limitation is that most existing
smartwatch-based eating monitoring methods only perform op-
timally in controlled conditions. The diverse and unpredictable
nature of real-world scenarios necessitates a more practical
solution.

To bridge the gap, several key challenges need to be
addressed, including dynamic interference, gesture variability,
and user diversity. (1) Dynamic Interference. Dynamic inter-
ferences, including motion-induced artifacts (e.g., reposition-
ing utensils or walking) and background noise (e.g., music in
public environments) are unpredictable. They can significantly
affect data collected from the smartwatch, leading to errors
in dietary behavior recognition. Mitigating the impact of such
interference is essential for enhancing the robustness of dietary
monitoring. (2) Gesture Generalization. Consistent features of
intake gestures must be extracted, as motion range and speed
can vary even when the same gesture is performed across
different scenarios or emotional states. Furthermore, requiring
users to provide samples for every potential non-eating activity
during training is impractical. An effective real-world di-
etary monitoring system must accurately identify eating times
even when encountering previously unseen daily activities.
(3) User Diversity. Individual differences in body shape and
oral structure present challenges for systems trained on limited
subject data, as they may struggle to generalize to unseen
users without retraining on user-specific data. Therefore, it is
necessary to develop a system that can accommodate unseen
users without extra dietary sample collection. In addition to
addressing these challenges, the system should provide fine-
grained and comprehensive monitoring in real-world settings.
This includes dietary time recognition, chewing and biting
frequency estimation, and food category classification. Such
a system would enable accurate dietary behavior tracking and
support future efforts in dietary assessment and personalized
nutrition.

To address these challenges, we propose a real-world dietary
monitoring system DietWatch, which achieves fine-grained
and robust dietary behavior monitoring using a commercial
smartwatch as shown in Figure 1. (1) We develop an in-
terference mitigation method for efficiently reducing real-
world interference in both acoustic and inertial domains.

Specifically, we develop a self-supervised denoising module
that integrates a Bidirectional Gated Recurrent Unit (Bi-GRU)
encoder and a Least Mean Square (LMS) adaptive filter to
suppress motion-induced inertial noise. We also develop a
time-domain convolutional neural network (Conv-TasNet) [25]
to build adaptive masks for the accurate extraction of dietary-
related acoustic signals. (2) To extract consistent features
of eating posture and enable robust recognition, we de-
velop a contrastive learning-based eating gesture identification
method, which enhances discriminability of temporal features
between eating and non-eating activities through contrastive
feature alignment. (3) To enhance the robustness of DietWatch
to individual differences in dietary behaviors, we develop a
cross-user adaptation module using an adversarial autoencoder
with maximum mean discrepancy regularization. By extracting
dietary behavior features impervious to individual variations,
DietWatch can function effectively with unseen individuals
without extra training efforts. To achieve fine-grained dietary
monitoring, we design a clustering algorithm to estimate
dietary time based on eating gesture identification. We also
develop an attention-based multimodal fusion strategy that
combines inertial and acoustic features, enabling fine-grained
estimation of biting and chewing frequencies, as well as food
category classification.

This paper is an extension of our preliminary work pre-
sented at IEEE/ACM CHASE 2025 [26], with additional
modules and comprehensive real-world evaluations. Our main
contributions are summarized as follows:

e We propose DietWatch, a robust dietary monitoring sys-
tem using a commercial smartwatch in real-world scenar-
ios, providing fine-grained dietary information including
dietary time, biting and chewing frequencies, and food
categories.

o« We develop an interference mitigation approach using
Bi-GRU and LMS filters to reduce inertial noise and
Conv-TasNet to isolate eating-related acoustic signals. We
further develop a contrastive learning-based method to
recognize dietary gestures without restricting on users’
eating style and daily activities.

e We design a multimodal feature fusion strategy with
attention mechanism to effectively combine dietary fea-
tures from different domains, and develop a cross-user
adaptation module that mitigates user-specific dietary
behavior differences, reducing the training efforts for
unseen users.

o We evaluate DietWatch on 40 food types in real-world
scenarios. Experimental results demonstrate that Diet-
Watch achieves robust performance with 79.95% temporal
Intersection over Union (tloU) for eating time detection,
85.68% accuracy for food type classification, and mean
absolute errors of 1.26 bites/min for biting frequency and
7.71 chews/min for chewing frequency estimation.

II. RELATED WORK
A. Dietary Monitoring Using Customized Wearable Sensors

In order to monitor dietary behaviors, researchers have
explored using sensors attached to different parts of the body
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TABLE I
FUNCTIONAL COMPARISON BETWEEN DIETWATCH AND EXISTING
SMARTWATCH-BASED DIETARY MONITORING APPROACHES.

Dietary Monitoring Real Eating | Food Bite/Chew
Systems world | time types | frequency
Sharma et al. [15] v X X
Kiyritsis et al. [34] X v X v
Zhang et al. [31] X X X v
Thomaz et al. [35] X X X X
Wang et al. [20] X v X v
Sen et al. [36] X v v v
Zhang et al. [30] X v v X
DietWatch v v v v

to capture the sound, motion, images, or physiological sig-
nals associated with eating behaviors. For instance, wearable
microphone sensors, such as ear-worn earpieces and throat-
mounted microphones, monitor food categories by capturing
chewing and swallowing [7], [8], [11], [27]. Smart cameras,
including intelligent glasses or head-mounted devices, monitor
dietary intake by capturing images of food [9], [13]. IMU
sensors embedded in accessories like eyeglasses, wristbands,
and necklaces identify food intake or chewing behaviors by
detecting characteristic vibrations [28]-[31]. More specialized
devices, such as neck-worn EGG sensors, head-mounted EMG
sensors, arm-mounted microneedles, and tooth-mounted RF-
trilayer sensors, have been explored to capture physiological
signals for dietary monitoring [16], [17], [32], [33].

Although these technologies demonstrate high accuracy in
detecting eating behaviors, they have several limitations that
reduce their practicality for everyday use. Many sensors re-
quire precise placement or specialized configurations, causing
discomfort during prolonged use and limiting user adherence,
particularly for children and the elderly. Additionally, the need
for professional setup and the high cost of these devices further
restrict their accessibility and large-scale deployment.

B. Dietary Monitoring Using Smartwatches

Smartwatches are widely adopted commercial devices, with
approximately 224 million users globally as of 2024 [18],
[19]. Their high acceptance rates and integration of multiple
sensors make them particularly suitable for real-world dietary
monitoring. Internet of Things (IoT) technologies have also
been explored for wearable health monitoring. Huang et al.
integrated EMG sensors into smart glasses for dietary monitor-
ing, transmitting chewing activity data to cloud platforms via
IoT frameworks [37]. Broader IoT healthcare applications have
demonstrated the integration of wearable sensors and body
area networks for real-time health monitoring [38]. Recent
work has applied IoT paradigms to wrist-worn sensor nodes
for physiological monitoring [39]. However, these IoT-based
approaches typically focus on single-parameter tracking rather
than comprehensive dietary behavior analysis in open-world
scenarios. Researchers have utilized smartwatches for dietary
time estimation by recognizing eating gestures [15], [21], [23],
[31], [36]. However, these methods often perform poorly in
real-world scenarios due to the presence of previously unseen
non-eating activities, such as touching the face or brushing
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Fig. 2. Characteristic acoustic and motion signals captured by smartwatches
for eating behavior detection.

teeth, which can be misclassified as eating gestures. Smart-
watches have also been employed for food category classifica-
tion [36], [40], but existing studies are limited by small food
category sets (fewer than 7 types) and insufficient handling
of dynamic interference and user variations. Similarly, biting
and chewing frequency estimation methods face challenges
due to oral structure variations across users, making them
difficult to generalize without additional data collection [8],
[30], [36], [40], [41]. To the best of our knowledge, existing
systems typically provide partial tracking of dietary behaviors,
focusing on a single aspect such as dietary time or food type.
In contrast, our system offers fine-grained dietary monitoring
and is designed to perform robustly in real-world scenarios. A
detailed comparison between our system and existing dietary
monitoring approaches is provided in Table 1.

III. PRELIMINARIES

A. Feasibility Study

Smartwatches can monitor eating behaviors using motion
and acoustic signals. Wrist movements, such as grabbing food
and bringing it to the mouth, generate distinct inertial data
captured as sequences of acceleration and angular velocity.
Simultaneously, biting and chewing produce acoustic signals
whose characteristics vary with food texture due to differences
in bone conduction and air propagation. To demonstrate the
feasibility of using smartwatches for fine-grained eating behav-
ior monitoring, we analyzed smartwatch data from multiple
participants consuming various foods. Figure 2(a) illustrates
spectrograms of chewing sounds from foods such as chips,
jelly, ice cream, and chocolate, revealing unique frequency
patterns associated with their textures. Figure 2(b) presents
a t-SNE visualization [42] of motion features, distinguishing
between eating gestures (e.g., eating with forks) and non-
eating activities (e.g., making a call). Additionally, Figure 2(c)
shows acoustic waveforms collected during eating, where
high-amplitude regions (marked in red) represent individual
biting or chewing events.
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Fig. 3. Key challenges of eating behavior monitoring in real-world scenarios.

B. Key Challenges in Real-World Dietary Monitoring

Developing a practical dietary monitoring system that can
be used in real-world scenarios faces several key challenges:

Dynamic Interference. Dynamic interference poses signif-
icant challenges to both inertial and acoustic data collection in
real-world scenarios [7], [43]. For inertial data, considerable
noise may arise from unstructured hand motions (e.g., reposi-
tioning utensils, adjusting plates) or environmental vibrations
caused by walking or riding on public transportation. These
motion-induced artifacts, as illustrated in Figure 3(a), dis-
tort speed and acceleration measurements, compromising the
distribution of motion features extracted from eating-related
inertial signals. For acoustic data, interference sources such
as conversations, keyboard typing, TV, and traffic noise often
overlap with the frequency bands of eating behaviors such as
chewing and biting sounds [40]. As shown in Figure 3(d), these
noises distort critical acoustic features of eating behaviors.

Gesture Generalization. Recognizing eating gestures is
challenging in real-world scenarios due to the prevalence of
hand-to-face movements resembling eating gestures, such as
applying makeup, smoking, and adjusting glasses [43], [44].
As shown in Figure 3(b), these non-eating activities often
generate motion features that overlap with eating gestures,
leading to false detections. One potential solution is to collect
a wide range of non-eating activities to better delineate the
decision boundaries separating eating from non-eating activ-
ities in feature space [35]. However, collecting training data
for every possible non-eating activities is impractical due to
the vast diversity of daily activities. This challenge is further
exacerbated by variability in eating behavior across different
scenarios, emotional states, and individual habits. For instance,
the speed and range of eating gestures may differ significantly
between casual dining at home and formal restaurant settings
or between hurried weekday meals and relaxed weekend
dining [14]. Figure 3(e) illustrates the motion features of
eating gestures performed at varying speeds. These challenges
necessitate the development of a more robust method for eating
behavior detection.

User Diversity. Individual differences in eating behaviors
pose a major challenge to system generalization [43]. Our
preliminary results reveal substantial variations in inertial and
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Fig. 4. DietWatch system design.

acoustic features among users, even when performing identical
eating behaviors. For example, as shown in Figure 3(c) and
(f), different users exhibit distinct motion and acoustic feature
patterns while consuming the same foods. These individual
differences pose a challenge to developing a universal eating
monitoring system that generalizes across users. Existing
methods typically adopt one of two approaches: retraining on
unseen user data, or pre-training on a large, diverse dataset to
build a robust model [14], [34], [35]. However, these strategies
are often impractical in real-world scenarios due to the high
burden of data collection, as users may be unwilling or unable
to provide the extensive training data required [40].

IV. DIETWATCH DESIGN

To address these challenges, we develop DietWatch, a
fine-grained dietary monitoring system design for real-world
scenarios with minimal user effort. The core of DietWatch
consists of four components: dynamic interference mitigation,
contrastive learning-based eating gesture identification, mul-
timodal feature fusion with cross-user adaptation, and fine-
grained dietary behavior derivation as shown in Figure 4.

DietWatch takes synchronized time-series inertial and
acoustic readings from smartwatches as input. To mitigate
noise in both modalities, we design a dynamic interference
mitigation module. In the inertial domain, we develop a self-
supervised denoising module that integrates a Bi-GRU encoder
and a Least Mean Square (LMS) adaptive filter to suppress
motion-induced noise. In the acoustic domain, we adopt
Conv-TasNet to isolate eating-related sounds by generating
adaptive time-frequency masks. To accurately recognize eating
gestures among diverse daily activities, we develop a GRU-
based feature extractor that captures temporal features from
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denoised sequential inertial data and applies contrastive feature
alignment to enhance discriminability between eating gestures
and other daily activities. Building on this foundation, we
design a multimodal feature fusion module with an attention
mechanism, enabling the system to emphasize eating-relevant
signals. We also introduce a cross-user adaptation strategy to
remove user-specific biases via adversarial learning, facilitat-
ing generalization to unseen users without retraining.

V. DYNAMIC INTERFERENCE MITIGATION
A. Inertial Signal Processing

In real-world scenarios, inertial signals collected from
smartwatches are inevitably affected by motion-induced noise,
including unstructured hand motions (e.g., repositioning uten-
sils) or environment-induced vibrations (e.g., those generated
by traveling in a moving vehicle). To address this challenge,
we develop a self-supervised denoising approach based on
Bi-GRU [45] and Least Mean Square (LMS) [46] adaptive
filter, which does not require explicit noise annotations during
training. We choose Bi-GRU because eating gestures exhibit
distinct temporal patterns, such as periodic wrist motions,
which Bi-GRU can effectively capture by leveraging its ability
to process sequential data in both forward and backward
directions. In contrast, unstructured hand motions (e.g., reposi-
tioning utensils, adjusting plates, or switching hand positions)
lack temporal coherence, often appearing as abrupt, irregular
signal deviations. During self-supervised training with our
reconstruction and smoothness objectives, the Bi-GRU learns
to preserve the structured periodicity of eating gestures while
reducing sensitivity to unstructured noise signals [47].

To further reduce the impact of environment-induced vi-
brations, we employ a LMS, which dynamically attenuates
environment-induced noise by iteratively adjusting to signal
variations in real-time. The algorithm minimizes the mean
squared error (MSE) between noisy and reference signals by
iteratively updating its filter weights. Reference signals are
pre-collected in controlled conditions (e.g., eating gestures
recorded in low-noise environments). To improve robustness,
we incorporate a confidence-based online refinement mecha-
nism that updates reference signal statistics only when both
low environmental noise and high-confidence eating gestures
are identified [46].

Self-supervised Multi-objective Denoising Strategy. We
design a multi-objective self-supervised loss function to de-
noise signals without requiring labeled data. The training
objective consists of a reconstruction loss and a temporal
consistency loss, complemented by two regularization terms.

The overall loss is:
T—1

L=M[&=x”+ X Y %41 — %[
t=1

+ Ag]1% = x]|* + A% — xparsf? )
where X is the reconstructed signal generated by the Bi-GRU
model, x is the raw input signal, r is the representative gesture
template (e.g., average of multiple samples collected under
low-noise conditions), and xy,ass is the denoised output of an
adaptive LMS filter.

Each term in the loss function plays a complementary role:
The first term enforces fidelity to the original signal. The
second encourages temporal smoothness to suppress high-
frequency noise. The third aligns the output with the pre-
collected reference signals. The fourth regularizes the output
toward an independently filtered version from LMS. The
weights \i-\4 are tuned empirically to balance reconstruction
accuracy and denoising effectiveness.

B. Acoustic Signal Processing

In addition to motion-induced noise in inertial signals,
acoustic signals captured during eating also suffer from
significant interference, especially in real-world scenarios.
Analyzing eating-related sounds is crucial, as these signals
provide information about food texture and the presence of
chewing/biting. However, acquiring high-quality eating sounds
in real-world scenarios is challenging due to environmental
noise, particularly in public spaces where noise levels vary un-
predictably in intensity (50-70 dB) and frequency (100 Hz-10
kHz). Traditional frequency-domain denoising methods, such
as Wiener filtering and spectral subtraction, are inadequate as
they often distort the signal and fail to preserve subtle acoustic
features critical for differentiating food textures [48].

Multi-branch Conv-TasNet Design. To overcome these
limitations, we design a time-domain denoising approach
based on a multi-branch Conv-TasNet architecture [25]. As
shown in Figure 5, we develop an encoder that transforms
input waveforms into high-dimensional feature representa-
tions using convolutional filter banks. An attention module is
trained jointly with the rest of the network to compares these
features with texture representations learned by each branch
and assigns weights to each Temporal Convolutional Network
(TCN) branch accordingly [49]. Each branch is specialized in
a particular food texture category and generates a separation
mask to enhance texture-relevant acoustic components while
suppressing irrelevant noise.

Training and Denoising Procedure. The Conv-TasNet is
trained on a curated dataset [25], augmented with environ-
mental noises via an SNR-based mixing method [50]. To
promote specialization, the dataset is grouped into food texture
categories (e.g., crispy, soft, mixed), and each TCN branch is
trained predominantly on one category using a weighted loss:

K K
L= aillf — x>+ 2D M1, 2
i=1 i=1

where Z; and x; represent the reconstructed and clean signals
for the i-th texture category, M; is the separation mask, «;
is a texture-specific weight, and A\ controls the sparsity of
the mask. During inference, the attention mechanism assigns
a weight to each branch by comparing input features with
the texture representations learned by each branch. The final
denoised signal is reconstructed by aggregating the outputs of
all branches, weighted according to these attention scores.

VI. CONTRASTIVE LEARNING-BASED EATING GESTURE
RECOGNITION

Eating gestures are distinct motion patterns involved in food
consumption, including utensil manipulation, food preparation
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(e.g., stirring, cutting), and hand-to-mouth movements. [43],
[51]. Recognizing eating gestures in real-world scenarios
presents unique challenges due to unseen daily behaviors and
the variability of unrestricted gestures (e.g., variations caused
by individual habits, emotional states, and eating scenarios)
as outlined in Section III-B. Traditional supervised learning
methods, which rely on predefined gesture categories and
extensive training data, often fail to generalize in real-world
scenarios due to the labor-intensive task of collecting exhaus-
tive samples for every possible non-eating activity and the
variability of eating gestures [35].

Contrastive Learning Framework. To address this issue,
we propose a contrastive learning framework that extracts
robust, invariant features capturing the shared characteristics
of diverse eating gestures, while distinguishing them from
kinematically similar non-eating activities [43]. The core idea
is to exploit the temporal dynamics (e.g., motion periodicity
and consistency) and spatial characteristics (e.g., range and
directionality) of gesture. These features capture similarities
across eating gestures and differences when contrasted with
non-eating activities. By learning invariant features over di-
verse activities, the framework enhances generalization to
previously unseen or unrestricted activities. As illustrated in
Figure 6, the proposed framework consists of three main
components: feature extraction, contrastive feature alignment,
and classification. The feature extraction module processes
inertial data to derive representative embeddings, which are
further refined by contrastive alignment to enhance their
discriminative power. The aligned embeddings are then fed
into a classifier to enable robust discrimination between eating
and non-eating activities, supporting generalization to diverse
and unrestricted eating behaviors.

Loss Function Design and Optimization. We design a
contrastive loss function specifically for distinguishing eating
gestures from similar non-eating gestures while accounting
for variations in eating styles. The feature extractor f(-) is
trained to minimize the cosine distance between embeddings
of positive pairs (a, p), where both z, and z, are instances
of eating gestures (e.g., using different utensils or eating at
varying speeds). The corresponding loss is:

Lpos = D(f(xa)a f('rp))Zv (3)
which encourages feature consistency within the eating class.
For negative pairs (a,n), where x,, is a non-eating activities
(e.g., smoking or adjusting glasses), we apply:

Lpeg = max(margin — D(f(z4), f(zn)),0)%, (4
to ensure sufficient separation between eating and non-eating
features. We use a margin of 1.0, a common choice in
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Fig. 6. The contrastive learning-based framework for eating gesture identifi-
cation.

contrastive learning [52]. The final contrastive objective is the
sum of Lpos and Lyeg, promoting both intra-class compactness
and inter-class separation.

VII. MULTIMODAL FEATURE FUSION

Multimodal data integration, combining inertial and acoustic
signals, enhances fine-grained food category classification
and chewing/biting detection in real-world scenarios. Inertial
signals capture hand motion dynamics, while acoustic signals
encode auditory patterns related to food texture. By leveraging
these complementary strengths, DietWatch address the limita-
tions of unimodal systems, such as difficulties in distinguishing
foods with overlapping features [13], [14], [28], [30], [31]. For
instance, slurping sounds are common across various noodle
dishes, but inertial data can differentiate them by capturing
utensil usage and associated hand gestures.

Attention-based Fusion Framework. To achieve effective
feature fusion, we propose an attention-based framework that
integrates acoustic and inertial features, as shown in Fig-
ure 7. Initially, denoised acoustic signals are converted into
time—frequency spectrograms using the Short-Time Fourier
Transform (STFT) [53]. We use a window size of 2048
samples and a hop length of 512 samples to ensure suffi-
cient frequency resolution for capturing discriminative spectral
features related to biting and chewing dynamics. Temporal de-
pendencies are captured through GRU-based feature extractors
tailored to each modality. The resulting feature embeddings
from the acoustic and inertial branches are then concatenated
and fed into a joint attention mechanism that assigns relevance
weights to informative temporal segments across both modali-
ties. This enables the model to dynamically emphasize acoustic
features when food textures vary significantly, or inertial
features when hand gestures provide more discriminative cues
for classification.

Loss Function Design and Optimization. To support
effective attention-based multimodal fusion described above,
we design a composite loss function that jointly optimizes
three objectives: classification accuracy, attention diversity,
and parameter regularization. In the following loss functions,
N denotes the number of samples in the training batch, which
ensures balanced gradient contributions.

The classification loss L. ensures that the fused features
remain discriminative for both food classification and chew-
ing/biting event recognition:

N
Le=-+ Ey log(5:), (5)
where y; is the ground truth label and g; is the predicted prob-

ability. To encourage diverse attention patterns, we introduce
an attention regularization loss that promotes orthogonality in
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Fig. 7. Architecture of the attention-based multimodal feature fusion frame-
work.

the attention weight matrix and prevents collapse into a single
focus:

N
1
L = N;HAA“IHF, (©)

where A is the attention weight matrix, I is the identity
matrix, and || - || denotes the Frobenius norm. Additionally,
a regularization term penalizes large model parameters to
prevent overfitting:

1 N
Lreg = N Z ||0||27 (7)
=1

where 6 includes all trainable parameters of the model. The
total loss function combines these objectives:

qusion = Lc + )\pLalt + )\queg; (8)
where )\, and A\, are empirically chosen weights to balance
the three terms. After training, the learned feature extractors
and attention modules are retained to enable robust fusion of
real-time inertial and acoustic inputs.

VIII. CROSS-USER ADAPTATION

As discussed in Section III-B, user-specific variations in
dietary behaviors, such as differences in eating sounds and
hand gestures, pose significant challenges for model general-
ization. These variations often cause domain shifts, leading to
performance degradation when applying pre-trained models to
unseen users in real-world scenarios [54].

Adversarial Autoencoder Framework. To enable cross-
user adaptation, we propose an adversarial autoencoder frame-
work to learn user-invariant feature representations of eating
behaviors, as illustrated in Figure 8. Our framework comprises
four key components: (1) an encoder network that transforms
the fused multi-modal features into a latent representation;
(2) a decoder network that reconstructs the original fused
features to preserve essential behavioral information; (3) a
discriminator that enforces a Laplace prior over the latent
space to promote sparsity, encouraging the model to isolate
salient behavioral patterns and improve generalization; and
(4) a domain adaptation module based on Maximum Mean
Discrepancy (MMD), which explicitly aligns the latent feature
distributions across users.

Loss Function Design and Optimization. The training
process jointly optimizes three objectives: classification accu-
racy, feature reconstruction, and representation regularization.
The classification loss L. ensures that the fused features

% ‘ Decoder

Classifier

of User n

Fig. 8. Architecture of the cross-user adaptation framework.

are discriminative for food classification and chewing/biting
detection. The feature reconstruction loss is defined as:

N

Le =y Do MSEGi 50, ©)
where N is the batch size used during training, p; and p;
denote the original and reconstructed feature vectors, and MSE
represents the Mean Squared Error. To regularize the latent
space, we adopt a Laplace prior, which promotes sparsity by
assigning higher probability to values near zero. This helps the
model isolate distinctive features relevant to dietary behaviors.
The adversarial loss is formulated as:

1

L, = —=)» MSE(h;,l;),

N ; (hi, 1:)

where h; is the predicted latent representation and [; is a
sample from the Laplace prior. The MMD loss explicitly aligns

latent feature distributions across users to mitigate user shifts:

1 N, 1 N,
L,, = max Z E;E(puz)—E;E(pvz) 07,

uU,v

(10)

where E(p, ;) and E(p, ;) represent the latent representation
for different users. The total loss functions are defined as:
Ladapl = Lc + )\aLr + )\bLa + Acha (12)
where A\, Ay, and A, are empirically tuned weighting parame-
ters to balance optimization and improve convergence. During
training, DietWatch leverages fused features from the multi-
modal feature fusion module to train the encoder, decoder,
and discriminator collaboratively. In the inference phase, only
the trained encoder is retained to extract user-invariant latent
representations. This enables robust dietary monitoring for
previously unseen users without additional training efforts.

IX. FINE-GRAINED DIETARY BEHAVIOR DERIVATION
A. Eating Time Derivation

To derive eating time intervals, we analyze the temporal
distribution of identified eating gestures produced by the
gesture recognition module. A temporal clustering algorithm
is applied to group temporally adjacent gestures into coherent
eating periods. The inertial data stream is segmented into
3-second windows, each independently classified as either
eating or non-eating. Each recognized gesture g; is associ-
ated with a timestamp ¢;, forming a time-ordered sequence
G = g1,92,...,9n. An eating period C}y is defined as a
consecutive subsequence of gestures satisfying:

Cr ={9i,9i+1,- -, 9j | tmy1 =t < 0, Vm € [i, 5 — 1]}

13)
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Fig. 9. Real-life eating scenarios for data collection.

Based on typical meal patterns and short pauses during eating,
we empirically set 6 to 25 seconds [22]. Gestures separated
by larger gaps are assigned to different periods. To improve
robustness, we retain only eating periods that contain at least
4 gestures per minute and last no less than 3 minutes.

B. Food Type Classification

Both food type classification and biting/chewing frequency
estimation are performed within the identified eating periods.
The classifier takes as input the latent representations produced
by the cross-user adaptation module and outputs food category
predictions. For food type classification, we employ a neural
network comprising two fully connected layers with ReLU
activation, followed by a softmax output layer that generates a
probability distribution over C' predefined food categories. The
model is trained using a standard cross-entropy loss function to
maximize classification accuracy. During inference, we adopt a
confidence-based decision rule: a prediction is accepted only
if the highest class probability exceeds a threshold of 0.85.
This strategy helps suppress low-confidence predictions arising
from noisy or ambiguous inputs.

C. Biting/Chewing Frequency Estimation

To achieve a comprehensive analysis of eating behaviors,
our system also estimates both biting and chewing frequency
over the eating period. We employ deep learning-based clas-
sifiers to detect biting and chewing events within each sliding
windows (e.g., 3 seconds). Specifically, we apply a binary
classifier T,(-) to identify whether a bite occurs within each
window, and a multi-class classifier I.(-) to predict the number
of chewing actions (ranging from 0 to 6) within each window.
These per-window predictions are then aggregated over the
eating period to compute the overall biting and chewing
frequencies.

o Zj Iy ([ vratent (7)) o Zj Le (vratent (4)1)

fblte - fz" fchew - #j’

Here, vjyent(j) denotes the latent features at the jth sliding
window, and 7; is the duration of the eating period.

(14)

X. PERFORMANCE

Device: We develop a prototype of DietWatch on three
mainstream smartwatches: the Samsung Galaxy Watch 5,
Google Pixel Watch 2, and Apple Watch Series 9. Each
device integrates a 6-axis IMU (3-axis accelerometer and 3-
axis gyroscope) and a microphone sampled at 41 kHz.

Experimental Scenarios: The system is evaluated across
four representative real-life dining contexts with distinct types
of dynamic interference, as illustrated in Figure 9(a):

TABLE II
ACTIVITY CATEGORIES IN DATASET

Category Activity Types
Eating Activities: 7 Using Spoon, Using Fork, Using Chopsticks,
types Drinking from Cup, Drinking from Bottle, Cutting

Food, Eating by Hand

Non-eating Activi-
ties: 16 types

Phone Call, Standing, Shaving Face, Cleaning
Ears, Conversation, Whistling, Nail Biting, Teeth
Brushing, Sitting, Head Scratching, Teeth Picking,
Hair Combing, Walking, Keyboard Typing, Book
Reading, Phone Browsing

1) Low Disturbance Dining (LDD): Participants eat alone
in a quiet room (less than 30 dB), without walking or multi-
tasking. 2) Public Venue Dining (PVD): Participants eat in a
coffee shop with moderate background noise from machines
(65-70dB), music (50-55dB), and conversations (55-60dB).
3) Mobile Context Dining (MCD): Participants eat portable
food (e.g., cookies, fruits) while walking indoors at 4-5
km/h, introducing continuous motion and ambient noise.
4) Social Dining (SD): Participants eat with 1-3 others while
engaging in natural conversations (60-65 dB) and frequent
hand gestures (e.g., phone use).

Data Collection: We conducted experiments with 30 par-
ticipants (17 males, 13 females), aged 20-59, each wearing
a DietWatch-enabled smartwatch on their dominant wrist.
Participants performed eating and non-eating activities under
the four defined real-life dining scenarios. All participants
provided informed consent, and the experimental protocol
was approved by the Institutional Review Board of Yeshiva
University. The data were collected over a period of four
months, resulting in more than 500 eating sessions and over
5500 minutes of recordings. Each session lasted 10 minutes
and included both eating and non-eating activities. The ex-
periments include 7 types of eating activities and 16 types of
non-eating activities as shown in Table II. A total of 40 food
types spanning 5 categories—staple foods, hard/crispy foods,
soft foods, fruits/vegetables, and beverages are evaluated in
the experiments and illustrated in the Table III.

Ground-truth annotations were obtained via synchronized
video recordings using a GoPro Hero 12 camera. To ensure
annotation reliability, we employed a semi-automated vali-
dation process: the Python script first provided automated
timestamp suggestions based on video analysis, which were
then manually verified and refined by the researcher through
careful frame-by-frame inspection. Ambiguous cases, such
as unclear gesture boundaries or overlapping activities, were
systematically reviewed through repeated playback.

Evaluation Metrics: 1) Accuracy. Accuracy is used
to evaluate the performance of the eating gesture iden-
tification and food type classification modules. It rep-
resents the proportion of samples correctly predicted
as the true labels (e.g., eating gesture or food type).
2) Temporal Intersection over Union (tloU). For eating time
estimation, we adopt temporal Intersection over Union (tloU)
to measure the alignment between predicted and ground-
truth eating periods. It is defined as: tIoU = }ggg},
where D and G denote the predicted and ground-truth eating
periods, respectively. A higher tloU indicates better tem-
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TABLE III
FOOD CATEGORIES (EACH CATEGORY CONTAINS 8 FOOD TYPES)

Category Food Types

(a) Staple Foods Rice, Corn, Bread, Crackers,

Boiled potatoes, Potato, Cereal

Fried buns,

(b) Hard/Crispy Foods Chips, Cookies, Fries, Peanut, Pecans, Gum,

Chocolate, M&M'’s

(c) Soft Foods Yogurt, Pudding, Cake, Egg,

Mousse, Marshmallow, Meat

Ice cream,

(d) Fruits/Vegetables Apple, Pear, Orange, Tangerine, Grape, Carrot,

Tomato, Cucumber

(e) Beverages Water, Tea, Coffee, Milk, Juice, Cola, Wine,

Parsley
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Fig. 10. Performance evaluation of eating gesture identification and eating
time estimation.

poral alignment and more accurate eating time estimation.
3) Mean Absolute Error (MAE). We assess the performance
of chewing/biting frequency estimation using MAE, which
measures the average absolute difference between the pre-
dicted and ground-truth frequencies (in times/min). It is cal-
culated as MAE = 2 37" | fiue i — festimated,i |, Where o is the
number of eating periods, fie,; iS the ground truth frequency
for the i-th eating period, and fegimaed,s 1S Our estimated
frequency for the i-th eating period.

A. Performance of Eating Time Estimation

Robustness to Unseen Non-Eating Activities. To evaluate
the robustness of our eating gesture recognition approach
against unseen non-eating activities, we design experiments
by varying the number of non-eating activity types in the
training set from 2 to 10 (out of a total of 16). For each
configuration, the remaining categories (from 14 to 6) are
used exclusively in the testing set to simulate unseen scenarios.
We conduct 50 repetitions per configuration using randomly
sampled category subsets to ensure statistical reliability and
minimize the impact of selection bias. We compare our

method against two baselines: (1) the same model without
incorporating the contrastive feature alignment, and (2) an
unsupervised k-means clustering approach [55]. As shown
in Figure 10(a), our method consistently outperforms both
baselines across all configurations. Notably, even under the
most challenging setting, where the training set includes only
2 non-eating activity categories and the testing set contains 14,
our approach achieves an identification accuracy of 82.40%.

Robustness to Behavioral and User Variations. To eval-
uate the system’s ability to extract consistent intake gesture
features across different scenarios, emotional states, and indi-
vidual habits, we conduct two sets of experiments: cross-day
and cross-user evaluations. In the cross-day evaluation, data
are collected from five separate days spaced two weeks apart,
introducing natural variability in behavior such as differences
in speed, motion range, and daily conditions. To evaluate
robustness, we employ a cross-validation strategy that uses
data from one day as the testing set and data from another
day as the training set. As shown in Figure 10(b), the x-
axis denotes the selected testing day (T1-T5). Our system
achieves consistently high eating gesture identification accu-
racy across all test days, with median performance exceeding
80%, demonstrating strong resistance to day-to-day variation.

In the cross-user setting, we evaluate how well the system
performs eating time estimation when applied to previously
unseen individuals. We first establish a within-user baseline,
where training and testing are both conducted on data from
the same participant. In this setting, our system achieves an
average tloU of 77.79%. We then perform leave-one-out cross-
validation (LOOCYV) on data from 10 participants. In each
iteration, the model is trained on data from 9 users and tested
on the remaining one. This setup reflects practical deployment
conditions where user-specific data may be unavailable. As
shown in Figure 10(c), the x-axis represents the testing user
ID (U1-U10). The results show that our system maintains
comparable performance across all users, with median tloU
consistently above 76%, validating the robustness of the ex-
tracted features against inter-user differences.

Robustness to Dynamic Interference. To assess the sys-
tem’s robustness in realistic and dynamically changing dining
environments, we evaluate the performance of eating time
estimation across four representative scenarios. As shown in
Figure 10(d), without the interference mitigation module, the
system achieves a tloU of 77.96% in low disturbance dining
(LDD), 74.12% in public venue dining (PVD), 76.23% in mo-
bile context dining (MCD), and 75.45% in social dining (SD).
With the interference mitigation module enabled, performance
improves consistently across all scenarios, with each bar in
Figure 10(d) showing a marked increase. On average, the tloU
increases by 4.75% across all scenarios, reaching an overall
accuracy of 79.95%. This validates the effectiveness of our
interference mitigation module in preserving accurate eating
period boundaries, even in complex real-world scenarios.

B. Performance of Food Type Classification

Overall Performance. To evaluate our system’s ability to
classify food types, we selected 40 commonly consumed food
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Fig. 11. Confusion matrix of food type classification (40 types across 5
categories; a—e correspond to Table III).

types as listed in Table III. We compare the proposed multi-
modal feature fusion framework with two baseline models: one
using only inertial features and the other using only acoustic
features. The inertial baseline achieves an average accuracy of
35.6%, while the acoustic baseline achieves 52.4%. In contrast,
our proposed method achieves a significantly higher accuracy
of 85.68%, demonstrating the effectiveness of feature fusion.
Figure 11 shows the confusion matrix across all 40 food
types. The system performs particularly well on hard/crispy
foods, achieving 90.85% accuracy, followed by staple foods
(86.25%), fruits/vegetables (85.12%), soft foods (84.35%),
and beverages (83.25%). The system maintains clear category
boundaries, with a low cross-category confusion rate of 0.42%
(i.e., the percentage of misclassifications where the predicted
food belongs to a different major category). In contrast, the
average intra-category confusion rate is 14.38% (i.e., misclas-
sifications within the same major category), indicating that
most classification errors occur between similar food types.
blueDetailed examination of the confusion matrix reveals
that these intra-category misclassifications occur primarily
between foods that exhibit both similar acoustic signatures
and comparable eating gestures. For instance, soft foods like
yogurt and pudding share similar acoustic properties due
to their viscosity. However, our multimodal approach can
often distinguish them through differences in eating gestures
(e.g., scooping vs. drinking). When both acoustic and inertial
features are similar—such as between crispy foods like chips
and cookies, citrus fruits like oranges and tangerines, or nuts
like peanuts and pecans—misclassifications still occur. These
results demonstrate that our multimodal fusion effectively
leverages complementary cues from both modalities, though
foods sharing similar characteristics across both domains re-
main challenging to distinguish. These results suggest that
our system effectively distinguishes among high-level food
categories while maintaining strong type-level resolution.
Robustness to Dynamic Interference. To evaluate the
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Fig. 12. Performance of food type classification in real-world scenarios.

robustness of food type classification in real-world conditions,
we assess the system’s performance across four representative
scenarios. As illustrated in Figure 12(a), without interference
mitigation module, the system achieves accuracies of 83% in
low-disturbance dining (LDD), 66% in public venues (PVD),
62% in mobile contexts (MCD), and 69% in social dining
(SD). With the interference mitigation module enabled, the
system consistently improves across all scenarios, with accu-
racy gains exceeding 10% in most cases. These results high-
light the module’s effectiveness in preserving essential eating
features and alleviating the impact of dynamic disturbances in
real-world settings.

Robustness to User Variations. To assess the system’s
generalization ability across users in food type classification,
we conduct a cross-user experiment involving five participants.
In each test, the model is trained on data from four users and
evaluated on the fifth, previously unseen, user. For baseline
comparison, we also perform within-user testing, where both
training and testing data come from the same user. Without
applying our cross-user adaptation framework, the system
reveals a notable performance drop, with an average accuracy
decreasing by 29.8% compared to within-user testing. This
result highlights the challenge posed by individual variability
in food type classification. As illustrated in Figure 12(b),
our cross-user adaptation framework significantly mitigates
this drop. After incorporating our adaptation framework, the
classification accuracy improves markedly for all users, with
an average gain of over 23.2%. These results demonstrate the
system’s ability to adapt effectively to new users and mitigate
the performance degradation caused by user diversity.

C. Performance of Biting and Chewing Frequency Estimation

Robustness to Dynamic Interference. We evaluate our
system’s performance in estimating chewing and biting fre-
quencies under 4 real-world scenarios. Participants are in-
structed to chew and bite food at normal rates, approximately
45 chews per minute and 5 bites per minute, respectively
[20], [56]. Video recordings are used to establish the ground
truth for evaluation. As shown in Figure 13(a), the cumulative
distribution function (CDF) of the mean absolute error (MAE)
in chewing frequency estimation demonstrates robust perfor-
mance across all scenarios. In LDD scenario, over 80% of the
MAE values fall below 7.3 chews/min. The system maintains
consistent accuracy in PVD, MCD, and SD scenarios, with
over 80% of the MAE values remaining below 6.7 chews/min
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Fig. 14. Performance of DietWatch in real-world environments over a 14-day

study.
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Fig. 13. (a-b) Cumulative distribution functions (CDF) of the mean absolute
error (MAE) for chewing and biting frequency estimation under 4 real-world
scenarios. (c—d) MAE comparison across different users before and after
applying the cross-user adaptation module for chewing and biting frequency
estimation.

in each case. Figure 13(b) shows the corresponding results for
biting frequency estimation. In LDD, over 80% of the MAE
is below 1.5 bites/min. In PVD, the same proportion of errors
falls below 1.3 bites/min. The system also sustains comparable
accuracy in MCD and SD, with over 80% of the MAE
below 1.6 bites/min across both. These results demonstrate that
our system achieves accurate chewing and biting frequency
estimation across diverse real-world scenarios.

Robustness to User Variations. We collected data from
five participants to evaluate the robustness of our frequency
estimation approach under user variations. In the within-
user testing setting, our system achieves an average MAE
of 7.71 counts/min for chewing frequency estimation and
1.26 counts/min for biting frequency estimation. To assess
generalization to unseen users, we conduct LOOCV. Without
cross-user adaptation framework, the estimation performance
degrades significantly compared to the within-user setting:
the MAE increases by 17% for chewing frequency and 21%
for biting frequency. With the proposed cross-user adaptation,
the performance improves markedly. As shown in Figures
13(c) and (d), the adaptation module effectively reduces the
MAE across users. Specifically, the median MAE for chewing
frequency decreases from 8.99 to 6.99 counts/min, while that
for biting frequency decreases from 1.52 to 1.11 counts/min.

XI. REAL WORLD CASE STUDY

To further evaluate DietWatch’s practical application capa-
bility in real-world scenarios, we conduct a 14-day real-world
tracking study. This study involves 5 participants who use
DietWatch during their daily lives over 14 consecutive days.
Participants are required to wore smartwatches for continuous

data collection and record videos as ground truth references.
The study collects approximately 70 hours of data across
diverse real-world environments, including homes, offices,
restaurants, cafes, and bedrooms. To evaluate robustness be-
yond controlled settings, participants engaged in various com-
plex dining scenarios such as communal dining with family
members and social gatherings with 3 people. Participants
consumed culturally diverse cuisines such as curry, dumplings,
kung pao chicken, pasta, and traditional American dishes. Fig-
ure 14 summarizes the system’s performance across multiple
tasks over the 14-day period.

Figure 14(a) shows the performance of eating moment
estimation across the 14-day study. Our system consistently
achieved high tloU scores, with daily medians ranging from
approximately 0.69 to 0.80. The interquartile ranges remain
narrow on most days, indicating stable performance with lim-
ited variance. Figure 14(b) presents the food type classification
performance. Our system maintains stable performance across
different days, with average accuracy around 73%. While some
fluctuations are observed such as Day 4 and Day 7, the overall
results demonstrate that our system remains robust under real-
world scenarios. Figure 14(c) shows the results of chewing
frequency estimation. Overall, the system achieves consistent
performance, with 85% estimations yielding MAE within 10
counts/min. Figure 14(d) presents the system’s performance in
estimating biting frequency. The system also maintains stable
performance throughout the period, with 68% to 85% of the
estimations each day achieving a MAE below 1.5 counts/min.
Overall, the consistent performance across all days validates
the effectiveness of our approach in real-world scenarios.

XII. DISCUSSION

Applications Enabled by DietWatch. DietWatch leverages
commercial smartwatches to collect data, offering a widely
accessible and scalable approach to unobtrusive dietary mon-
itoring. It provides retrospective insights into users’ eating
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behaviors, allowing them to reflect on dietary habits and
trends. By supporting longitudinal tracking of eating patterns,
DietWatch is well-suited for applications such as habit forma-
tion analysis and personalized behavioral coaching. Looking
ahead, we plan to enhance DietWatch’s capabilities to estimate
caloric intake and nutritional composition by integrating fine-
grained food composition databases. This advancement could
enable more tailored dietary guidance, including daily caloric
targets and macronutrient balance optimization.

Limitations and Future Work. DietWatch currently relies
on continuous IMU sampling to capture motion data. To
conserve battery and protect user privacy, the microphone is
triggered only when an eating event is detected. This design
helps reduce power consumption and mitigates potential pri-
vacy concerns associated with constant audio recording.

The system currently performs deep learning inference on a
remote server. While effective, server-side inference introduces
network dependencies and may pose challenges in privacy-
sensitive environments. To reduce reliance on cloud resources,
we plan to migrate early-stage processing modules—such as
interference mitigation and feature extraction—to the smart-
watch.

To support this migration, we will apply model compression
techniques such as quantization and pruning [57] to develop
lightweight version of interference mitigation modules that
can operate efficiently on wearable hardware. We will further
explore split learning [58] to allow the early portions of
the feature extractors to run locally on the smartwatch while
transmitting only intermediate representations to the server.
Additionally, federated learning [59] offers a promising avenue
for DietWatch to enable more personalized dietary monitoring
while ensuring that raw data remains local to individual
devices. Collectively, these approaches provide the technical
foundation needed to move portions of the DietWatch pipeline
onto the device and decrease dependence on remote inference.

Beyond deployment considerations, there is also room to
improve classification accuracy through more advanced multi-
modal fusion architectures. Transformer-based fusion models
[60] and lightweight temporal attention mechanisms [61] may
help reduce intra-class confusion and better leverage cross-
modal dependencies. We plan to explore these algorithmic
refinements alongside enhanced privacy-aware deployment
strategies in future system iterations.

Finally, while DietWatch performs reliably in typical social
dining environments where individuals are seated at least 1.2
meters apart, challenges remain in close-proximity scenarios.
When two users sit shoulder-to-shoulder and share snacks,
overlapping acoustic signals—arising from simultaneous eat-
ing sounds and nearby conversations—introduce complex in-
terference that exceeds the capability of our current denoising
approach. Addressing this limitation will require future devel-
opment of advanced source separation algorithms to isolate
eating-related sounds in such environments.

XIII. CONCLUSION

In this paper, we propose DietWatch, a fine-grained dietary
monitoring system designed for real-world scenarios using

a commercial smartwatch. By addressing challenges such as
dynamic interference, gesture generalization, and user diver-
sity, DietWatch can provide robust dietary behavior analysis
with minimal user effort. Experimental results demonstrate the
system’s effectiveness, achieving 79.75% tloU for eating time
estimation, 86.0% accuracy in food type classification, and
MAE of 1.2 bites/min for biting frequency and 7.8 chews/min
for chewing frequency estimation. DietWatch offers a scalable
and practical solution for dietary monitoring, paving the way
for advancements in personalized nutrition and public health
interventions.
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